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Abstract

Purpose – The purpose of this paper is to describe the development of an electroosmotic dynamic
model to simulate the transport phenomena in association with the electric therapy in modern medicine.

Design/methodology/approach – The present study builds a new model by employing SUPG
finite element method to solve the electroosmotic transport equation in microchannels of human body.

Findings – The present electroosmotic finite element analysis demonstrated that the electric
treatment has a better curative effect.

Research limitations/implications – The governing electric field equations for tissue fluids in
microchannel include the Laplace equation for the effective electrical potential and the Helmholtz equation
for the electrical potential established in the electric double layer (EDL). The transport equations
governing the hydrodynamic field variables include the mass conservation equation for the electrolyte and
the equations of motion for the incompressible charged fluids subject to an electroosmotic body force.

Practical implications – The phenomena of microchannels are dominated by elliptic equations,
Laplace, Helmholtz and diffusion equations (Navier Stokes equations at Re ¼ 0.0259). These
governing equations explain why the reaction of electric treatment is very fast, even immediate.

Originality/value – The analysis of the coupled hydrodynamic and electrical fields, the externally
applied electric potential has been shown to be an aid to accelerate the tissue fluid due to the formation
of an EDL. Interaction of plasma and tissue fluids in human body is also revealed.

Keywords Finite element analysis, Hydrodynamics, Flow, Human physiology, Modelling

Paper type Research paper

1. Introduction
The length scales in tissue fluids are slightly larger than 10m. Owing to the large
surface-to-volume ratio in microchannels, the liquid subjected to an externally applied
electrical field may be greatly influenced by the interfacial effect due to the formation
of an electric double layer (EDL). Study of the applied electric field interacted with the
charged fluids near the channel walls or around the suspended charges becomes
essential. In other words, to acquire knowledge regarding the coupling mechanism of
ion flow and electric fields turns out to be an academic subject worthy of an intensive
exploration in the field of electrohydrodynamics.

On the charged surface, which is in contact with an electrolyte, EDL consists of a
compact layer of immobile balancing charges and a diffuse layer of mobile ions. The
thickness of the counter-ion shielding layer can be characterized by its Debye length,
which typically has a length of 10 nm or less. The interface between the compact
(or stern) and diffuse layers, in which the liquid velocity is zero under the zero pressure
gradient condition, is known as the shear plane. In the diffuse layer, the excess counter
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ions can be transported by an externally applied force. This electroosmostic
phenomenon was firstly observed by Reuss (1809). The formation of the resulting bulk
flow is now known to be the consequence of electroosmosis force since the moving ions
can drag their surrounding fluids by virtue of the fluid viscosity.

Subsequent to the mathematical theory proposed by Wiedemann (1852), the progress
towards investigating the electroosmotic flows in complex microfluidic networks for
loading, mixing, and flushing purposes has been considerable (Sinton et al., 2002; Lin
et al., 2002; Chang and Yang, 2004; Liu et al., 2004). Owing to the emerging lab-on-a-chip
microfluidic devices, numerous experimental and computational studies have been
carried out for enhancing our understanding of the electroosmotic phenomena in
microchannels. Most of the pervious studies have been denoted to the exploration of
hydrodynamic behaviors for various industrial applications (Mala et al., 1997; Patankar
and Hu, 1998; Stroock et al., 2002; Chen et al., 2004).

Electro-treatments have long been known to be effective in relieving the pain (Mao
et al., 1980; Han et al., 1983; Romita et al., 1997; Ulett et al., 1998; Wan et al., 2001; Huang
et al., 2002). Bensoussan (1991) found that human acupuncture points are usually
located near the blood vessels, nerves and receptors, lymphatics. Tiberiu and Gheorghe
(1981) used the ions of radioactive isotope, injected into the acupuncture points, and
found that ions are migrated along the gaps of myo-fiber to form a route as meridian in
Chinese medicine. However, very little attention has been paid to the study of
conductive tissue fluids in human microchannels. This study is aimed to build an
electroosmosis model to simulate the interaction of blood and tissue fluid under the
action of physiological acupuncture.

The rest of this paper is organized as follows. Section 2 presents the
electrohydrodynamic governing equations. This is followed by briefly presenting the
finite element model employed for solving the EOF equations given in Section 2 and
the code validation in Section 4. Section 5 describes the model problem and discusses the
predicted results in details. Finally, some conclusions will be drawn in Section 6.

2. Governing equations
In the physical domain V, the working equations adequate for the current
electrohydrodynamic study will be described. The Laplace equation given below is
used to model the externally applied potential (w)

72w ¼ 0 ð1Þ

For the tissue fluid with ions described by the Boltzmann distribution, the z potential
C in the EDL can be modeled by the following Helmholtz equation:

72c ¼
1

l2
D

c ð2Þ

In the above, the Debye and Hückel (1923) length lD:
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is equal to 8.93 £ 1027 m. Note that kb is known as the Boltzmann constant, 1 the
permittivity of the buffer solution, T the absolute temperature, e the elementary charge,
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ni0 the ion density bulk solution, and zi the valence of the ion. Finally, the momentum
equation subjected to the externally applied electro-kinetic body force can be expressed
as follows (Jahrul and John, 2002):

u ·7u ¼ 2
1

r
7P þ m72uþ

1

rl2
D

c7ðwþ cÞ ð3Þ

where u is the velocity, p the pressure, m the dynamic viscosity (blood:
m ¼ 3.0 £ 1023 Pa s; tissue fluid: m ¼ 1.2 £ 1023 Pa s) (Fung, 1997) and r the
density (r ¼ 1,057 kg/m3 for the blood; r ¼ 1,035 kg/m3 for the tissue fluid) (Fung,
1997). For the investigated incompressible fluid flow, the equation for the conservation
of mass is given by:

7 · u ¼ 0 ð4Þ

3. Finite element model for the transport equations
Within the streamline upwind Petrov Galerkin finite element framework, the
weighting function W is given by:

Wi ¼ Ni þ Bi ð5Þ

where Ni is the shape function. In the above, the biased weighting function Bi is
given by:

Bi ¼ tNi
~V
k

i

›Ni

›xk
ð6Þ

where t determines the degree of upwinding (Sheu et al., 1995; Wang and Sheu, 1997;
Sheu and Chen, 1999; Sheu and Tsai, 1999). To solve the incompressible electroosmotic
transport equations shown in Section 2, the bi-quadratic shape function (Ni, i ¼ 1 , 9)
for the velocity vector field and the bi-linear shape function (Mi, i ¼ 1 , 4) for the
pressure unknown will be employed so that the required Ladysenskaja-Babuska-Brezzi
condition (Ladyshenskaya, 1969) for the chosen set of primitive variables is satisfied
(Sheu et al., 1995). The resulting weak solutions uj, vj and pj for equations (3) and (4) can
be calculated from the matrix equation given by:

Z
g h

Cij 0 2Mj
›Ni

›x
þ Bi

›Mj

›x

0 Cij 2Mj
›Ni

›y
þ Bi

›Mj
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2
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where:

Cij ¼ ðNi þ BiÞ Nj
~V
k

j

� �
·
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þ m
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and Dj ¼ ðNi þ BiÞ
1

rl2
D
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›Ni

›xk
wi ·

Since the differential equations for modelling the respective applied electric potential
and z potential in equations (1) and (2) are classified to be elliptic, their resulting Galerkin
equations can be expressed as:
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 !
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In this paper, the frontal direct solver will be employed to calculate the solutions from the
respective matrix equations given in equations (7)-(9).

4. Verification study
For the sake of verification, the analytical problem of Prashanta and Ali (2001),
subjected to the boundary conditions schematic in Figure 1, is chosen for comparing
the predicted electroosmotic/pressure mixed flow solution with the exact solution in
the straight channel, which has a dimensionless height of 1. For the flow in the channel
with a width, which is much smaller than the channel length, it is assumed to be steady
and fully developed. Given the dimensionless electroosmotic potential C, the predicted
z potential in Figure 2 is shown to have a good agreement with the analytic solution
given by Prashanta and Ali (2001). The predicted velocity profiles shown in Figure 3
are also seen to compare fairly well with the exact velocity distributions under the
different prescribed inlet pressure values.

5. Discussion of results
Tissue fluid and blood flows can interact with each other through the activities
amongst the myo-fibers, micro-vessels, lymphatic and nerves. To highlight the
dynamical behaviours, both tissue fluids and blood fluids will be taken into account.
According to the physiological sizes and coefficients of microcirculation given in Fung
(1997) and Valtin and Schafer (1995), the relationship between the arteriole and venule
vessels and the tissue fluid is clearly shown in Figure 4. The pressure and velocity in
the arteriole are both specified to have larger magnitudes than those in the venule
vessels and the tissue fluid channel. The venule vessels have been specified to
have the negative pressure boundary values, while the tissue fluid path is assumed to
have the zero pressure at the outlet. The applied boundary conditions schematic in
Figure 4 are summarized as below (Valtin and Schafer, 1995):

Capillary inlet (arteriole end):

w ¼ 50 V;
›c

›x
¼ 0 V=m;

›u

›x

›v

›x
¼ 0 sec21;P ¼ 20 mmHg: ð10Þ

Figure 1.
The specified boundary

conditions for the
analytical test problem
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Capillary outlet (venule end):

w ¼ 0 V;
›c

›x
¼ 0 V=m;

›u

›x
¼

›v

›x
¼ 0 sec21;P ¼ 210 mmHg: ð11Þ

Figure 3.
Comparison of the
predicted and analytical
velocity profiles at
different values of › p/› y
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Figure 2.
Comparison of the
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Tissue fluid at the channel inlet:

w ¼ 50 V;
›c

›x
¼ 0 V=m;

›u

›x
¼

›v

›x
¼ 0 sec21;P ¼ 0:03 mmHg: ð12Þ

Tissue fluid at the channel outlet:

w ¼ 0 V;
›c

›x
¼ 0 V=m;

›u

›x
¼

›v

›x
¼ 0 sec21;P ¼ 0 mmHg: ð13Þ

Walls of capillary and tissue fluid:

›w

›x
¼ 0 V=m;c ¼ 0:09 V; u ¼ v ¼ 0 m=sec ð14Þ

The current study employs 48,389 nodal points to generate the mesh shown in Figure 5.
The mesh densities have been kept increasing until the computed solutions shown in
Figure 6 and tabulated in Table I become grid independent. In all the iterative

Figure 4.
Schematic of the tissue

fluid channel and the
capillaries considered

in the proposed
electroosmosis transport

model
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Figure 5.
The meshes generated for
the current electroosmosis

flow calculation
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processes, calculation of the pressure and velocity values will be terminated when their
residual norms become smaller than 10210.

The wall thickness for capillaries is specified to be 1mm with 21 gaps ( ¼ 0.4mm)
along a 1 mm length. The kinematic viscosities of the tissue fluid and blood flows are
assumed to be 1.2 £ 1023 m2/s and 3.0 £ 1023 m2/s, respectively. The densities of
the tissue fluid and blood flows are assumed, respectively, to be 1,035 and 1,057 kg/m3.
The capillary flow in the proposed bio-fluid model is of an osmotic type. According to
the Starling (1896) equilibrium law, the osmotic velocity depends on the hydraulic
(blood hydraulic pressure p*a;v and tissue fluid hydraulic pressure p0) and osmotic
pressures (plasma osmotic pressure pp and tissue fluid osmotic pressure p0) of the
vessel and tissue. Since no coefficient is currently available to represent the osmotic
pressure for the blood flows and tissue fluid, the present study considers the
simplification by virtue of the expression given by pa;v ¼ p*a;v 2 pp þ p0.

The mean values of the body fluid and blood velocities in the investigated tissue fluid
channel and capillaries at the arteriole/venule ends are denoted as ut (ut-in and ut-out were
the velocities at the inlet and outlet), ua and uv, respectively. At the normal condition, the
hydraulic pressures of arteriole, venule and tissue shown in equation (3) were prescribed
as p*a ¼ 40 mmHg, p*v ¼ 10 mmHg, p0-in ¼ 0.03 mmHg, p0 ¼ 0 mmHg, respectively. The
osmotic pressures for the plasma and tissue fluids were set to have the values of
pp ¼ 25 mmHg, p0 ¼ 5 mmHg, respectively, (Valtin and Schafer, 1995). In the
investigated model, the pressure values for pa, pv, p0-in and p0 are prescribed as
pa ¼ 20 mmHg (2,666.44 nt/m2), pv ¼ 210 mmHg (21,333.22 nt/m2), p0-in ¼ 0.03 mmHg

Figure 6.
The predicted
grid-independent solutions
at x ¼ 0.0018 m in meshes
1 and 2: (a) velocity; (b)
zeta potential
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Note:Tissue fluid channel

Nodal number DM/M

Mesh 1 32,813 2.11 £ 1022 per cent
Mesh 2 48,389 6.42 £ 1023 per cent

Note: ðDM=M Þ ¼ ðM in2blood þM in2tissuefluidÞ2 ðM out2blood þM out2tissuefluidÞ=ðM in2blood þM in2tissuefluidÞ

Table I.
Check of mass
conservation for the
calculations carried out in
meshes 1 and 2
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(4 nt/m2), p0 ¼ 0 mmHg (0 nt/m2), respectively. The velocity magnitudes for ut-out, ua and
uv are predicted to be 4.29, 57.9 and 53.1 cm/min, respectively.

The tissue fluid in the channel under current investigation is rich in ions. In the
clinical therapy, the electric paste-piece treatment has been widely employed. To study
the resulting electric paste-piece effect, two externally applied potentials f ¼ 50V and
f ¼ 0V were imposed at the inlet and outlet, respectively. Under the condition of an
externally applied voltage, the predicted mean tissue fluid velocities at the electric
paste-piece and normal states are compared and tabulated in Table II. The tissue fluid
velocity was seen to be increased from 4.29 cm/min to 12.30 cm/min.

The filtration flow from the capillary through 21 gaps to the tissue fluid channel is
shown in Figure 7. Since no electric potential gradient is applied in the range between
the inlet and outlet gaps, flows passing through the gaps are solely driven by the
pressure force. As a result, the velocity profiles are predicted to be similar to each other
at the normal and electric paste piece states. In Figure 8, the predicted streamlines are
found to be densely distributed downstream of the capillary. The explanation for such
distribution is that the tissue flow has been enhanced by the osmosis effect present in

U0-out Effect of physiology

Normal 4.29 cm/min At the normal state, the mean velocity of the tissue
fluid is about several centimeters per minute

Electric paste piece
Vext ¼ 50 V

12.30 cm/min
(2.86 times of
the normal state)

Two electric paste pieces are applied at the upstream
and downstream sides of the tissue fluid. The mass
transport in the tissue fluid channel becomes faster

Table II.
Comparison of the

predicted velocities for
the cases investigated at

the normal and electric
paste piece states

Figure 7.
The predicted filtration

velocity profile along the
capillary wall

Tissue fluid channel
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between the plasma and tissue fluids. The predicted velocity vectors along with the
predicted pressure contours inside the tissue fluid channel are also shown in Figure 8
for highlighting the osmotic flow behavior. For a pure electroosmotic flow without
pressure gradient, the predicted velocity is found to be uniformly distributed in the
channel core. Within the EDL region, the flow becomes, however, sharply varied in
order to match the no-slip velocity condition at the walls. According to the velocity
vectors, the predicted flow is clearly shown to enter the arteriole and exit the venule
(outlet). These findings are similar to the theoretical results of Overbeek (1952),
Cummings et al. (2000) and Santiago (2001).

The predicted contours for both pressure and z potential are shown in Figures 9
and 10, respectively. It is observed from Figure 9 that the predicted pressures are
relatively larger in the arterioles in comparison with those predicted in the venules.
Owing to the existence of such a pressure gradient established between the arterioles
and venules, there exists a blood flow moving in the direction from the arteriole to
the venules. Since the flow can be driven by the pressure and electroosmotic forces, the
pressure is distributed fairly uniform in the entire tissue fluid channel and is linearly
distributed in the capillaries.

The contours of flow acceleration predicted under the applied electric paste piece
and normal states are shown in Figure 11. In the tissue fluid channel, a larger absolute
acceleration was found near the capillaries. Fluid flow is accelerated due to filtration in

Figure 8.
The streamlines and
velocity vectors predicted
at the electric paste piece
state

Figure 9.
The pressure contours
predicted at the electric
paste piece state
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the range between X ¼ 0.0005 m and X ¼ 0.0012 m and is decelerated in the range
between X ¼ 0.0012 m and X ¼ 0.0015 m. By integrating the acceleration values in the
tissue fluid channel, the electric paste piece case was found to be able to yield a
magnitude of 2.86 times of that predicted under the normal condition. Application of
the electric paste piece can, therefore, result in a larger momentum than that predicted
at the normal condition owing to the electric force. This phenomenon can be clearly
demonstrated from the predicted velocity profiles shown in Figure 12.

Along the line of X ¼ 2.2 £ 1024 m in the tissue fluid channel, the acceleration
value at the normal state is almost zero, as compared with the acceleration value

Figure 10.
The z potential contours
predicted at the electric

paste piece state
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Figure 11.
The plots of acceleration
contours: (a) predicted at
the applied electric paste

piece state; (b) predicted at
the normal state
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predicted at the electric paste piece state (Figure 13). According to the computed force
components shown in the momentum equation (Figure 14), the tissue fluid channel can
be separated into the electric force dominated area (III) and pressure force dominated
area (IV). Since the electric force dominated area is predicted to be near the wall, the

Figure 12.
The predicted velocity
profiles at
X ¼ 2.2 £ 1024 m,
6.0 £ 1024 m,
10.1 £ 1024 m and
15.3 £ 1024 m. Note that
N represents the normal
state and E denotes the
electric paste piece state

N N N NE E E E

Figure 13.
The predicted flow
acceleration at the normal
state is almost equal to
0 m/s2 along
X ¼ 2.2 £ 1024 m
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N

NDebye length

electric-paste

normal

Notes: At the electric paste piece state, the predicted acceleration can be separated into the (I)
acceleration; and (II) deceleration regions
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electric force can render a larger acceleration (Figure 13) and the velocity profile looks
like a plateau (Figure 15) predicted under the electric paste piece state.

6. Concluding remarks
The blood and tissue flow motions in the investigated model were considered to be
of the creeping type with the respective Reynolds numbers of 0.0106 and 0.0259.

Figure 15.
Comparison of the velocity

profiles predicted at the
normal and electric paste

piece states.

Figure 14.
At the electric paste piece

state, the predicted force
components in the

momentum equation are
separated into the: (III)

electric force dominated
area; and (IV) pressure

force dominated area
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Within the complex electro-osmosis dynamical framework, the Poisson-Boltzmann
equation and the modified Navier-Stokes equations are solved together to calculate the
electrostatic potential distribution and the blood/tissue fluid velocity in response to
the applied electric field with/without the pressure gradient. According to the predicted
fluid acceleration, flow rate, and force components shown in the momentum equation,
the electric treatment was shown to be able to result in a better curative effect.
Furthermore, some dynamic insights of the blood/tissue interaction become more clear
through the present study.
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